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Abstract

Consider a symmetric common-value Tullock contest with incomplete infor-

mation in which the players�cost of e¤ort is the product of a random variable

and a deterministic real function of e¤ort, d. We show that the Arrow-Pratt

curvature of d; Rd; determines the e¤ect on equilibrium e¤orts and payo¤s of

the increased �exibility/reduced commitment that more information introduces

into the contest: If Rd is increasing, then e¤ort decreases (increases) with the

level of information when the cost of e¤ort (value) is independent of the state

of nature. Moreover, if Rd is increasing (decreasing), then the value of public

information is non-negative (non-positive).
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1 Introduction

We study how changes in the information available to the players of a symmetric

common-value Tullock contest with incomplete information a¤ect their equilibrium

payo¤s and their incentives to exert e¤ort. In a Tullock contest a player�s probability

of winning the prize is the ratio of the e¤ort he exerts and the total e¤ort exerted by all

players �see Tullock (1980). In a symmetric common-value contest with incomplete

information players have a common state dependent value for the prize and a common

state dependent cost of e¤ort, and all players have the same information.

There are a variety of economic settings (rent-seeking, innovation tournaments,

patent races) in which agents face a game strategically equivalent to a Tullock contest

� see Baye and Hoppe (2003). Tullock contests may also arise by design, e.g., in

sport competition or internal labor markets �see Konrad (2008) for a general survey.

Skaperdas (1996) and Clark and Riis (1998) provide alternative axiomatizations of

Tullock contests.

In our setting, players�uncertainty about their common value and common cost is

described by a probability space, and players�information is described by a sub�eld of

the �eld on which players�common prior is de�ned. Representing players�information

as a �-sub�eld (rather than as a partition) allows us to capture situations in which,

for example, players�value and/or cost are continuous random variables and players�

information comes from observing a continuous signal. (In the setting considered by

Wasser (2013), for which we derive results in Proposition 5.2, players are uncertain

about their constant marginal cost of e¤ort, which is the realization of a continuous

random variable. If players observe a noisy public signal of their marginal cost,

then we may not be able to represent their information as a partition.) In this

model, changes in the level of information are conveniently represented as changes in

the sub�eld describing the players�information. (When players�uncertainty can be

represented as a partition, our model is equivalent to Harsanyi�s model �see Jackson

(1993) and Vohra (1999).)

We begin by showing that every contest in which players�cost of e¤ort is a twice

di¤erentiable, strictly increasing and convex function in every state has a unique equi-

librium in pure strategies, which is symmetric and interior. We establish this result

by �rst showing along lines of the proof of Szidarovszky and Okuguchi (1997)�s Theo-
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rem 1 that the complete information game de�ned by the realized state of nature has

a unique equilibrium, which is symmetric and interior. (Establishing this result when

the cost function is convex, rather than strictly convex, allows as to deal with the

linear case.) Then we construct an equilibrium of the Bayesian game of incomplete

information associated to the contest appealing to the argument of Theorem 3.1 in

Einy, Moreno and Shitovitz (2003) �EMS (2003) henceforth. Our existence result im-

plies those obtained by Warneryd (2003) and Wasser (2013), which deal with the two

polar cases in which players have either full information or just the prior information.

Einy et al. (2015) have recently established a general existence theorem for Tullock

contests with incomplete information when the probability space describing players�

information is countable, and have provided conditions for uniqueness of equilibrium.

(Also, see Ewerhart and Quartieri (2013) on the issue of uniqueness of equilibrium.)

These results do not apply to our setting, in which the probability space may be

in�nite and the players� information is described by a �-sub�eld of subsets of the

state space.

There is a well known formal equivalence between Tullock contests and the Cournot

model. This equivalence allows us to use some auxiliary results obtained in EMS

(2003), which studies the value of public information in a Cournot duopoly. Unlike

EMS (2003), however, we do not assume that the cost function is linear, but allow in-

stead for any convex function. Also, our results apply to generalized Tullock contest,

for which a player�s probability of wining the prize is the ratio between her score and

the sum of the scores of all the players, provided the score is a twice di¤erentiable,

increasing and concave function of e¤ort. In contrast, EMS (2003) assumes that the

demand function, whose role in the Cournot model is akin to that of the contest

success function in a Tullock contest, is log concave. Also unlike EMS (2003), we

allow for any �nite number of players instead of just two, and we derive results about

the impact of information on players�equilibrium expected e¤orts as well as on their

payo¤s �EMS (2003) is concerned exclusively with the value of public information.

For the class of contests in which equilibrium is unique and symmetric, the ques-

tion �how changes in the level of information available to the players a¤ects their

equilibrium expected payo¤s and e¤orts� is well posed. We are able to provide an

answer to this question when the players�cost of e¤ort is a multiplicative function,
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that is, when it is the product of a random variable and a deterministic real-valued

function d of the player�s e¤ort. Following EMS (2003), given a function d and a pair

of random variables (v; w) describing, respectively, the players�common value and

common cost, which are the uncertain elements of the contest, we de�ne a binary

relation that ranks information sub�elds according to the level of information they

contain: a sub�eld H is more informative than some other sub�eld G if the predic-
tions of the value and cost are the same whether players�information is given by H
or by the aggregate information in H and G.
More information allows the contest�s participants more �exibility when choosing

how much e¤ort they want to exert, but reduces their ability to commit to exert a

low e¤ort when, e.g., the value of the prize is high. We de�ne two auxiliary real-

value functions, S and U , which provide the equilibrium expected e¤ort and payo¤,

respectively, in a contest in which v and w are positive constant random variables

and players have full information (i.e., their information �eld is the �eld on which the

common prior is de�ned). It turns out that the curvature of these functions determine

the e¤ect on equilibrium expected e¤ort and payo¤, respectively, of the increased �ex-

ibility/reduced commitment that more information introduces into the contest: if S

is convex (concave), then the players�expected e¤ort increases (decreases) with the

level of information. Likewise, if U is convex (concave), then the players�expected

payo¤ increases (decreases) with the level of information, i.e., the value of public

information is non-negative (non-positive). Moreover, the conditions leading to ei-

ther of these functions been either concave or convex are related to the Arrow-Pratt

curvature of the function d; the deterministic component of the cost function. (In

expected utility theory the Arrow-Pratt curvature of an individual�s utility function

is a measure of his relative risk aversion.)

Using our results relating the curvature of the auxiliary functions S and U to the

e¤ect of changes of information on equilibrium expected e¤orts and payo¤s, we show

that if the Arrow-Pratt curvature of d is increasing, then the equilibrium expected

e¤ort decreases with the level of information in contests in which the cost of e¤ort

is independent of the state of nature, and increases with the level of information

in contests in which the value is independent of the state of nature. Moreover, if

the Arrow-Pratt curvature of d is increasing (decreasing), then the value of public
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information is non-negative (non-positive) in every symmetric common-value Tullock

contest with incomplete information in the class de�ned by the function d.

An interesting implication of our results is that if players�e¤orts are monetary,

i.e., if the function d is the identity, then the Arrow-Pratt curvature of d is constant,

and therefore the value of information is zero (i.e., payo¤s are invariant to changes

in information). If the cost of e¤ort is independent of the state of nature, then the

equilibrium expected e¤ort is also invariant to changes in information, whereas if the

common value is independent of the state of nature, then the equilibrium expected

e¤ort increases with the level of information �see Example 5.4.

In contrast, if d is a convex quadratic cost function, for example, then the Arrow-

Pratt curvature of d is increasing, and therefore the value of information is non-

negative. If in addition the cost of e¤ort is independent of the state of nature, then

players exert less e¤ort the better informed they are. It is not di¢ cult, however, to

�nd examples in which the cost of e¤ort is state-dependent, and players exert more

e¤ort the better informed they are �see Example 5.4.

The impact of public information on the equilibrium expected payo¤s and e¤orts in

Tullock contests has been seldom studied in the literature. For two-player generalized

Tullock contests, in which the prize is allocated using some score function g; and

e¤orts are monetary (i.e., the cost of e¤ort is independent of the state of nature and

d is the identity), Warneryd (2003) studies the equilibrium expected e¤orts for two

polar information structures: when players�information about the value is just their

common prior, and when they observe the value. Warneryd (2003) �nds that whether

the equilibrium expected e¤ort is greater or less for one or the other information

structure depends on whether the ratio g=g0 is a concave or convex function. This

result is easily derived in our setting, and extended to contests with any number of

players and arbitrary information structures. Moreover, we are able to evaluate as

well the impact of changes in the level of information on the equilibrium payo¤s �see

Proposition 5.3.

Wasser (2003) studies Tullock contests in which the players�constant marginal

cost of e¤ort is uncertain �see also Myerson and Warneryd (2006). For symmetric

contests, Wasser (2003)�s Proposition 3 shows that when players�information about

the common marginal cost is just their prior information they exert less e¤ort than
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when they observe the marginal cost. We show that this conclusion, which is an

implication of our results, extends to any two comparable information structures.

Moreover, we show that in these contests the value of public information is zero,

i.e., equilibrium payo¤s are invariant to changes in the level of information � see

Proposition 5.2.

Other related work includes Morath and Münster (2013), and Kovenock, Morath

and Münster (2013), who study the incentives for information acquisition and in-

formation sharing, respectively, in all-pay auction contests, and Denter, Morgan and

Sisak (2011), who identify conditions under which a mandated transparency policy on

lobbying leads to an increase in e¤orts. Of course, there is a large literature studying

the value of information and the incentives for information acquisition in auctions.

2 Symmetric Common-Value Tullock Contests

In a Tullock contest, a group of players N = f1; :::; ng; with n � 2; compete for a prize
by choosing a level of e¤ort in R+. Given a pro�le of players�e¤orts x 2 Rn+nf0g
the prize is allocated to player i 2 N with probability ��i(x) = xi=�x; where �x �PN

j=1 xj; whereas if x = 0, i.e., if players exert no e¤ort, then the prize is allocated

using some predetermined probability vector ��(0) 2 �n. We assume that players are

uncertain about their common value for the prize and their common cost function.

This uncertainty is described by a probability space (
;F ; p); where 
 is the set

of states of nature, F is a �-�eld of subsets of 
; and p is �-additive probability

measure on F . We interpret p as the players�common prior belief about the realized
state of nature. The players�value of the prize is described by an integrable function

v : 
 ! R++: The player�s cost is described by a function c : 
 � R+ ! R+
such that for every integrable function s : 
 ! R+; c(�; s(�)) is integrable. The
players� information about the state of nature is described by a �-sub�eld of F ,
G, specifying the event observed by players following each realization of the state
of nature. We therefore identify a symmetric common-value Tullock contest with

incomplete information with a collection T = (N; (
;F ; p); v; c;G). (The description
of a Tullock contests omits any reference to the probability distribution ��(0) used

to allocate the prize when players exert no e¤ort since, as we show in the proof of
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Lemma A.1 in the Appendix, under our assumptions the unique equilibrium of T is

independent of ��(0).)

A symmetric common-value Tullock contest with incomplete information T =

(N; (
;F ; p); v; c;G) de�nes a Bayesian game G(T ) in which the set of actions of each
player is R+, and the payo¤ function of each player i 2 N is ui : 
� Rn+ ! R given

for every ! 2 
 and x 2 Rn+ by

ui(!; x) = ��i(x)v(!)� c (!; xi) :

In this game a pure strategy of player i 2 N is an integrable G-measurable function
si : 
 ! R+ specifying player i�s e¤ort in each state of nature. (Requiring that a

strategy be G-measurable restricts the events on which a player may condition her
actions to those that she observes.) Given a strategy pro�le s = (s1; :::; sn); we denote

by s�i the pro�le obtained from s by suppressing the strategy of player i 2 N: A (pure
strategy) Bayesian Nash equilibrium of a symmetric common-value Tullock contest

T is a (pure strategy) Bayesian Nash equilibrium of G(T ). Throughout the paper

we restrict attention to pure strategy equilibria. An explicit de�nition of equilibrium

follows.

Let T = (N; (
;F ; p); v; c;G) be a symmetric common-value Tullock with incom-
plete information. If X is an integrable random variable on (
;F ; p); and H is a

�-sub�eld of F we write E[X j H] for the conditional expectation of X with respect

to H. A pro�le of strategies s� = (s�1; :::; s�n) is Bayesian Nash equilibrium of T if for

every player i 2 N; every pure strategy si of player i, and almost all ! 2 
;

E[ui(�; s� (�)) j G](!) � E[ui(�; s��i (�) ; si (�)) j G](!):

Our �rst result establishes conditions implying the existence and uniqueness of a

pure strategy equilibrium in symmetric common-value Tullock contests with incom-

plete information.

Theorem 2.1. A symmetric common-value Tullock contest with incomplete infor-

mation in which the players�cost function c(!; �) is twice di¤erentiable, strictly in-
creasing, convex, and satis�es c(!; 0) = 0 for all ! 2 
 has a unique (pure strat-

egy) Bayesian Nash equilibrium, s�. Moreover, s� is symmetric and interior, i.e.,

s�1(!) = s
�
2(!) = ::: = s

�
n(!) > 0 for all ! 2 
.
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Proof: For every ! 2 
 de�ne the n-person complete information game G(!; T ) in
which the set of pure strategies of every player is R+ and the payo¤ function of each

player i 2 N; hi(!; �) : Rn+ ! R+; is given for x 2 Rn+ by

hi(!; x) = E[ui(�; x) j G](!):

The game G(!; T ) has a unique Nash equilibrium t�(!) = (t�1(!); :::; t
�
n(!)), which is

symmetric and interior, i.e., t�1(!) = t
�
2(!) = ::: = t

�
n(!) > 0: (We establish this result

along the lines of Szidarovszky and Okuguchi (1997)�s Theorem 1 in Lemma A.1 �

see the Appendix.) Using an argument analogous to that of the proof in Theorem 3.1

in Einy, Moreno and Shitovitz (2002) one can show that the strategy pro�le s� 2 Sn

given for ! 2 
 by s�(!) = t�(!) is a Bayesian Nash equilibrium of the Bayesian

game G(T ). Uniqueness, symmetry and interiority follows from the fact that for

all ! 2 
 the pro�le t�(!) 2 Rn+ is the unique Nash equilibrium of G(!; T ), and

t�1(!) = t
�
2(!) = ::: = t

�
n(!) > 0. �

Theorem 2.1 holds on a broader class of generalized symmetric common-value

Tullock contests with incomplete information in which the prize is allocated according

to a contests success function � : 
 � Rn+ ! �n given for (!; x) 2 
 � Rn+nf0g and
i 2 N by

�i(!; x) =
g(!; xi)Pn
j=1 g(!; xj)

;

where g : 
�R+ ! R+ is a score function such that for all ! 2 
; g(!; �) is twice dif-
ferentiable, strictly increasing and concave, and satis�es g(!; 0) = 0. In the Bayesian

game de�ned by a generalized Tullock contest, (T; g); where T = (N; (
;F ; p); v; c;G);
the payo¤ function of each player i 2 N is given for all (!; x) 2 
� Rn+ by

ui(!; x) = �i(!; x)v(!)� c(!; xi):

Hence there is a bijection between the equilibrium sets of this contest (T; g) and

the Tullock contest T̂ = (N; (
;F ; p); v; ĉ;G); in which the cost function is ĉ(!; �) =
g�1(!; �) � c(!; �) for all ! 2 
. The next remark, which makes precise this relation,
will be useful to derive the implications for generalized Tullock contests of the results

obtained in sections 3 and 4 for Tullock contests.

Remark 2.2. A symmetric common-value generalized Tullock contest with incom-

plete information ((N; (
;F ; p); v; c;G); g) in which the players�cost function satis-

7



�es the assumptions of Theorem 2.1 and the score function g(!; �) is twice di¤eren-
tiable, strictly increasing and concave, and satis�es g(!; 0) = 0 for all ! 2 
 has

a unique (pure strategy) Bayesian Nash equilibrium ŝ�. Moreover, ŝ� is symmetric

and interior, and is given for all ! 2 
 by ŝ�(!) = g�1(!; s�(!)); where s� is the

unique Bayesian Nash equilibrium of the Tullock contest (N; (
; F; p); v; ĉ;G); with
ĉ(!; �) = g�1(!; �) � c(!; �) for all ! 2 
.

In order to study the e¤ect of information on equilibrium e¤orts and payo¤s,

we restrict attention to the class of symmetric common-value Tullock contests with

incomplete information in which for all (!; x) 2 
� R+ the players�cost is

c(!; x) = w(!)d(x);

where w is a non-negative integrable random variable, i.e., w 2 L1+(
;F ; p), and d is
a deterministic real-valued function.

Let d be a twice di¤erentiable, strictly increasing, and convex function such that

d(0) = 0: We denote by T (d) the family of all symmetric common-value Tullock
contests with incomplete information, (N; (
;F ; p); v; wd;G); de�ned by a pair of
non-negative integrable random variables (v; w) 2 L1+(
;F ; p) � L1+(
;F ; p); and a
�-sub�eld of F , G.
Let (v; w) 2 L1+(
;F ; p) � L1+(
;F ; p); and let G and H be any two �-sub�elds

of F . We say that H is weakly more informative than G, and we write H % G, if

E(v j H) = E(v j G _ H) and E(w j H) = E(w j G _ H);

where G _ H is the smallest �-sub�eld of F that contains both G and H. That is,
H is weakly more informative than G if the predictions of the value and the cost (the
uncertain elements of the contest) are the same whether players information is given

by H or it is given by the aggregate information in G and H. Note that H % G
whenever H is �ner than G.
For any �-sub�eld of F , G, we denote by s�G and u�G the equilibrium strat-

egy and payo¤ of every player in the Bayesian Nash equilibrium of the contest

T = (N; (
;F ; p); v; wd;G) 2 T (d): (These mappings are well de�ned because by
Theorem 2.1 each contest has a unique and symmetric equilibrium.) Let T =

(N; (
;F ; p); v; wd;G) 2 T (d): We say that the value of public information in T
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is non-negative (non-positive) if for every contest (N; (
;F ; p); v; wd;H) 2 T (d),

H % G ) E(u�H) � E(u�G) (E(u�H) � E(u�G)).

Also, we say that the equilibrium expected e¤ort is decreasing (increasing) with the

level of information in T if for every contest (N; (
;F ; p); v; wd;H) 2 T (d),

H % G ) E(s�G) � E(s�G) (E(s�H) � E(s�G)).

3 Information and E¤ort

We study the e¤ect of changes in the level of information on the equilibrium expected

e¤ort. For each (a; b) 2 R2++ we denote by s(a; b) the strategy of each player in the
unique Bayesian Nash equilibrium of the contest (N; (
;F ; p); a1
; (b1
) d;F), and
write

S(a; b) := E(s(a; b)) (1)

for the equilibrium expected e¤ort. Proposition 3.1 establishes an auxiliary result

relating the e¤ect of changes of the level of information on the equilibrium expected

e¤ort to the curvature of the function S (speci�cally, whether it is convex or concave).

We omit the proof of this proposition since it is identical to that of Proposition 3.3

in EMS (2003), which establishes this result by a simple argument involving the Law

of Iterated Expectations and Jensen�s Inequality.

Proposition 3.1. Assume that d is twice di¤erentiable, strictly increasing and con-

vex, and such that d(0) = 0. If the function S is convex (concave) on R2++, then the

equilibrium expected e¤ort increases (decreases) with the level of information in every

symmetric common-value Tullock contest with incomplete information T 2 T (d).

Let d be a twice di¤erentiable, strictly increasing and convex function satisfy-

ing d(0) = 0: For all (a; b) 2 R2++ the contest (N; (
;F ; p); a1
; (b1
) d;F) has a
unique symmetric Bayesian Nash equilibrium by Theorem 2.1. In this equilibrium

the strategy of every player satis�es s(a; b) > 0. Therefore

��i(s(a; b)(!); :::; s(a; b)(!)) =
1

n
(2)
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for all i 2 N and ! 2 
, i.e., in equilibrium all players win the prize with the same

probability. Moreover, since s(a; b) maximizes

E[ui(�; s(a; b); :::; s(a; b); xi) j G](!) = E[
xi

(n� 1)s(a; b) + xi
a� bd(xi) j G](!)

for all ! 2 
, the �rst order condition

E[
a (n� 1)
n2s(a; b)

j G](!) = bE[d0(s(a; b)) j G](!)

holds for all ! 2 
: Since s(a; b) is G-measurable, then

s(a; b)d0(s(a; b)) =
n� 1
n2b

a: (3)

Proposition 3.2 provides conditions under which the curvature of the deterministic

component of the players�cost (speci�cally the sign of the second derivative of the

product xd0(x)) determines the e¤ects of changes in the level of information on the

equilibrium expected e¤ort. For all a; b 2 R++, let

�S(a) := S(a; 1); and Ŝ(b) := S(1; b):

The functions �S and Ŝ identify the equilibrium expected e¤ort of every player in the

unique Bayesian Nash equilibrium of the contests (N; (
;F ; p); a1
; (1
) d;F) and
(N; (
;F ; p); 1
; (b1
) d;F), respectively.

Proposition 3.2. Assume that d is thrice di¤erentiable, strictly increasing and

convex, and satis�es d(0) = 0, and let T 2 T (d) be a symmetric common-value
Tullock contest with incomplete information.

(3.2.1) If w is constant on 
 and (xd0(x))00 is non-positive (non-negative) on R+,

then the equilibrium expected e¤ort increases (decreases) with the level of information

in T .

(3.2.2) If v is constant on 
 and (xd0(x))00 is non-positive on R+, then the equilibrium

expected e¤ort increases with the level of information in T .

Proof. We prove Proposition 3.2.1. Di¤erentiating equation (3) with respect to

a we get

(sd0(s))
0
(a; b)sa(a; b) =

n� 1
n2b

:
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Hence

sa(a; b) =
n� 1

n2b (sd0(s))0 (a; b)
> 0; (4)

i.e., the equilibrium e¤ort increases with the players�common value of the prize, a.

Di¤erentiating this expression we get

saa(a; b) = �
n� 1
n2b

(sd0(s))00 (a; b)sa(a; b)�
(sd0(s))0 (a; b)

�2 = �(sd
0(s))00 (a; b)

(sd0(s))0 (a; b)
(sa(a; b))

2 : (5)

W.l.o.g. assume that w(�) = 1 on 
. Since sa(a; 1) > 0 by (4), then equation (5)

implies

saa(a; 1) S 0, (sd0(s))
00
(a; 1) T 0:

Hence:

(sd0(s))
00
(a; 1) � 0) �S 00(a) = E(saa(a; 1)) � 0;

and

(sd0(s))
00
(a; 1) � 0) �S 00(a) = E(saa(a; 1)) � 0:

Therefore the conclusion of Proposition 3.2.1 follows from Proposition 3.1.

We prove Proposition 3.2.2. Di¤erentiating (3) with respect to b we get

sb(a; b) = �
(n� 1)a
n2

1

(sd0(s))0 (a; b)

1

b2
< 0; (6)

i.e., the equilibrium e¤ort decreases with b (hence with the cost of e¤ort). Di¤eren-

tiating this expression with respect to b again yields

sbb(a; b) =
(n� 1)a
n2

1

b2
1

(sd0(s))0 (a; b)

�
2

b
+
(sd0(s))00 (a; b)sb(a; b)

(sd0(s))0 (a; b)

�
: (7)

W.l.o.g. assume that v(�) = 1 on 
. Since sb(1; b) < 0 as shown in (6), then

(sd0(s))
00
(1; b) � 0) sbb(1; b) > 0) Ŝ 00(b) = E(sbb(1; b)) > 0;

where the �rst implication follows from equation (7). Thus, the equilibrium expected

e¤ort increases with the level of information in T by Proposition 3.1. �

For any twice di¤erentiable strictly increasing function d : R+ ! R+, the Arrow-

Pratt curvature of d is given for x 2 R+ by

Rd(x) =
xd00(x)

d0(x)
:
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In expected utility theory, �Rd is interpreted as a measure of relative risk aversion for
an individual with preferences represented by a concave von Neumann-Morgenstern

utility function d. In our setting, however, d is the deterministic component of the

players� cost, and is assumed to be convex (rather than concave) to assure that

an equilibrium exist (by Theorem 2.1). Also, the players�utility function is state-

dependent. Thus, interpreting Rd as a measure of relative risk aversion would be a

stretch. Nevertheless, as Proposition 3.3 below shows the derivative of Rd identi�es

conditions on the curvature of d which allow us to determine the impact of changes

in the level of information on the equilibrium expected e¤orts (as well as on payo¤s,

as we shall see in the next section).

Proposition 3.3. Let d be a thrice di¤erentiable, strictly increasing and convex

function satisfying d(0) = 0. If Rd is increasing, then in every symmetric common-

value Tullock contest with incomplete information T 2 T (d) in which v (respectively,
w) is constant on 
 the equilibrium expected e¤ort increases (decreases) with the level

of information.

Proof. For all x 2 R+;

(1 +Rd(x))
0 =

�
(2d00(x) + xd000(x)) d0(x)� (d0(x) + xd00(x))d00(x)

(d0(x))2

�
=

(xd0(x))00 � d0(x)d00(x)� x (d00(x))2

(d0(x))2
:

If Rd is increasing, then

R0d(x) = (1 +Rd(x))
0 � 0) (xd0(x))00 � d0(x)d00(x) + x (d00(x))2 � 0;

and therefore by Proposition 3.2.1 the equilibrium expected e¤ort decreases with the

level of information in T whenever w is constant on 
.

Assume that v is constant on 
, and w.l.o.g. set v(�) = 1: Taking log in equation
(3) yields

ln s(a; b) + ln d0(s(a; b)) = ln
n� 1
n2

+ ln a� ln b:

for all (a; b) 2 R2++: Setting a = 1 and di¤erentiating with respect b yields

�1
b
=
sb(1; b)

s(1; b)
+
sb(1; b)d

00(s(1; b))

d0(s(1; b))
=
sb(1; b)

s(1; b)
(1 +Rd(s(1; b)) :

12



Hence sb(1; b) < 0: Di¤erentiating with respect to b again yields

1

b2
=
sbb(1; b)s(1; b)� sb(1; b)2

s(1; b)2
(1 +Rd(s(1; b)) +

sb(1; b)

s(1; b)
(1 +Rd(s(1; b))

0 :

If Rd is increasing, then the second term in the right hand side is non-positive, and

therefore the �rst term is positive, i.e.,

sbb(1; b) >
sb(1; b)

2

s(1; b)
> 0:

Hence

Ŝ 00(b) = E(sbb(1; b)) > 0;

and thus by Proposition 3.1 the equilibrium expected e¤ort increases with the level

of information in T . �

4 The Value of Public Information

In this section we study the value of public information. Let d be a twice di¤erentiable,

strictly increasing and convex function satisfying d(0) = 0: For each (a; b) 2 R2++
we write U(a; b) for the expected equilibrium payo¤ in the unique Bayesian Nash

equilibrium of the contest (N; (
;F ; p); a1
; (b1
) d;F). Proposition 4.1 establishes
an auxiliary result relating the curvature of the function U to the sign of the value

of information. This result on the value of public information is the counterpart of

Proposition 3.1. Its proof is also omitted.

Proposition 4.1. Assume that d is twice di¤erentiable, strictly increasing and con-

vex, and satis�es d(0) = 0, and let T 2 T (d) be a symmetric common-value Tullock
contest with incomplete information. If the function U is convex (concave) on R2++,

then the value of public information in T is non-negative (non-positive).

Our main result in this section establishes that the Arrow-Pratt curvature of the

deterministic component of the cost function determines the value of information in

a symmetric common-value Tullock contest with incomplete information. In estab-

lishing this result the homogeneity of degree one of U plays a key role.

Theorem 4.2. If d is thrice di¤erentiable, strictly increasing and convex, and such

that d(0) = 0 and Rd is increasing (decreasing), then the value of public information

13



in every symmetric common-value Tullock contest with incomplete information T 2
T (d) is non-negative (non-positive).

Proof. For (a; b) 2 R2++ the unique equilibrium contest (N; (
;F ; p); a1
; (b1
) d;F)
is symmetric and interior by Theorem 2.1. Hence in equilibrium all players win the

price with the same probability �see equation (2), and therefore

U(a; b) =
a

n
� bE(k(a; b)); (8)

where

k(a; b) := d(s(a; b)):

Let � 2 R++: Since the payo¤ function of a player in the Bayesian game associated
with the contest (N; (
;F ; p); �a1
; (�b1
) d;F) is

ui(!; x) = ��i(x)�a� �bd(xi) = �[��i(x)a� bd(xi)];

then s(�a; �b) = s(a; b) and U(�a; �b) = �U(a; b); i.e., s is homogeneous of degree

zero and U is homogeneous of degree one on R2++: Hence U is convex (concave) if and

only if Uaa(a; b) � 0 (Uaa(a; b) � 0) �see Lemma A.2 in the Appendix.
Di¤erentiating (8) we get

Uaa(a; b) = �bE(kaa(a; b)):

We show below that

kaa(a; b) S 0, R0d T 0:

Hence

R0d � 0) E(kaa(a; b)) � 0) Uaa(a; b) � 0;

and

R0d � 0) E(kaa(a; b)) � 0) Uaa(a; b) � 0;

which completes the proof by Theorem 4.2.

Di¤erentiating k we get

ka(a; b) = d
0(s(a; b))sa(a; b):

14



Di¤erentiating again and using equation (5) we get

kaa(a; b) = d00(s(a; b)) (sa(a; b))
2 + d0(s(a; b))saa(a; b)

=

�
d00(s(a; b))� d0(s(a; b))(sd

0(s))00 (a; b)

(sd0(s))0 (a; b)

�
(sa(a; b))

2 :

Hence

kaa(a; b) S 0 , d00(s(a; b))

d0(s(a; b))
� (sd

0(x))00 (a; b)

(sd0(x))0 (a; b)
S 0

, (ln d0(s(a; b)))0 �
�
ln (sd0(s))0 (a; b)

�0 S 0
,

�
ln
(sd0(s))0 (a; b)

d0(s(a; b))

�0
T 0

,
�
(sd0(s))0 (a; b)

d0(s(a; b))

�0
T 0

,
�
1 +

s(a; b)d00(s(a; b))

d0(s(a; b))

�0
T 0

, R0d(s(a; b)) T 0: �

5 Applications and Examples

Our next proposition derives the implications of our results for classic Tullock con-

tests, in which the players�marginal cost is equal to one independently of the state,

i.e., for contests in the class T = N; (
;F ; p); v; (1
) �d;G) 2 T ( �d); where �d is the
identity function. Since R0�d(x) =

�
x �d0(x)

�00
= 0 for all x 2 R+, these results follow

immediately from Proposition 3.2.1 and Theorem 4.2.

Proposition 5.1. In every symmetric common-value classic Tullock contest with

incomplete information the value of public information is zero, and the equilibrium

expected e¤ort is invariant to changes in the players�information.

Wasser (2013) studies symmetric common-value Tullock contest with incomplete

information in which the players�value is v(�) = 1 on 
; and their constant marginal

15



cost of e¤ort is a random variable, i.e., contests in the class T = (N; (
;F ; p); 1
; w �d;G) 2
T ( �d). Wasser (2013)�s Proposition 3 establishes that players exert less e¤ort when
their information about their constant marginal cost of e¤ort is just their prior than

when they observe it. Proposition 5.2, which follows immediately from Proposition

3.2.2 and Theorem 4.2, extends this result to general information structures, e.g., to

the case in which players observe a noisy public signal of their common constant mar-

ginal cost of e¤ort, and also establishes results about the value of public information

in these contests.

Proposition 5.2. In every symmetric common-value Tullock contest T 2 T ( �d) in
which the value v is constant on 
 the equilibrium expected e¤ort increases with the

level of information, and the value of public information is zero.

Warneryd (2003) studies two-player generalized Tullock contests in which the

players� cost of e¤ort is c(!; x) = x for all ! 2 
; and shows that if the score

function is a state-independent, thrice di¤erentiable, increasing and concave function

g : R+ ! R+ such that g(0) = 0; then players�exert less (more) e¤ort when their

information about the value is just their prior than when they observe the value

whenever the function g=g0 is convex (concave). Proposition 5.3 derives this result,

extends it to contests with more than two players and general information structures,

and establishes results about the value of public information.

Proposition 5.3. Let g : R+ ! R+ be a thrice di¤erentiable, strictly increasing,

and concave function satisfying g(0) = 0, and let ((N; (
;F ; p); v; (1
) �d;G); g) be a
symmetric common-value generalized Tullock contest with incomplete information. If

the function g=g0 is concave (convex), then the equilibrium expected e¤ort increases

(decreases) with the level of information, and the value of public information is non-

negative (non-positive).

Proof. Let a 2 R+: By Remark 2.2, the contest T = ((N; (
;F ; p); a1
; (1
) �d;G); g)
has a unique equilibrium. Denote by ~s(a) the strategy of every player in this equilib-

rium. Since ~s(a) maximizes

E[
g(xi)

(n� 1)g(~s(a)) + g(xi)
a� xi j G](!);
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for all ! 2 
; the �rst order condition

E[
n� 1
n2

g0(~s(a))

g(~s(a))
a j G](!) = 1

holds for all ! 2 
: Since ~s(a) is G-measurable, then

g(~s(a))

g0(~s(a))
=
n� 1
n2

a:

Di¤erentiating this equation we get�
g(~s(a))

g0(~s(a))

�0
~s0(a) =

n� 1
n2

:

Since g is concave, then ~s0(a) > 0; i.e., the equilibrium e¤ort increases with the

players�common value of the prize, a. Di¤erentiating again yields�
g(~s(a))

g0(~s(a))

�0
~s00(a) +

�
g(~s(a))

g0(~s(a))

�00
~s0(a) = 0:

Hence �
g(~s(a))

g0(~s(a))

�00
R 0, ~s00(a) Q 0:

Thus, ~S(a) := E[~s(a)] is convex (concave) whenever g=g0 is concave (convex), and

therefore the equilibrium expected e¤ort increases (decreases) with the level of infor-

mation by Proposition 3.1.

Moreover, ~s(a) > 0 by Remark 2.2, and therefore since �d is the identity the

equilibrium expected payo¤ is

~U(a) :=
a

n
� E(~s(a)):

Hence ~U(a) is convex (concave) whenever g=g0 is convex (concave), and thus the

equilibrium payo¤ increases (decreases) with the level of information by Proposition

4.1, i.e., the value of information is non-negative (non-positive). �

We conclude discussing examples that illustrates other interesting features.

Example 5.4. Consider two-player Tullock contests in which 
 = f!1; !2g, F =

f?;
; f!1g; f!2gg; p(!1) = p(!2) = 1=2; and d(x) = x2=2+ �x; where � � 0. Hence
R0d(x) > 0 if � > 0; and R

0
d(x) = 0 if � = 0: We calculate the equilibria in contests

17



in which players�information is F and G = f?;
g; and the value and the random
component of the cost are (v̂; ŵ) and (~v; ~w) described in the following table

!1 !2 E(�)
v̂; ŵ 1; 1=4 3; 1=4 2; 1=4

~v; ~w 2; 1=8 2; 3=8 2; 1=4

:

The table below describes the equilibrium e¤orts and payo¤s for � = 2:

� = 2 !1 !2 E(�)
ŝ�G

p
3� 1

p
3� 1

p
3� 1

ŝ�F
p
2� 1 1 1=

p
2

û�G 1=2�
p
3=4 3=2�

p
3=4 1�

p
3=4

û�F 5=8�
p
2=4 7=8 3=4�

p
2=8

~s�G
p
3� 1

p
3� 1

p
3� 1

~s�F
p
5� 1

p
7=3� 1

p
7=12 +

p
5=4� 1

~u�G 1�
p
3=8 1� 3

p
3=8 1�

p
3=4

~u�F 7=8�
p
5=8 9=8�

p
21=8 1� (

p
5 +

p
21)=16

One readily veri�es that E(ŝ�F) < E(ŝ�G); and E(~s�F) > E(~s�G); i.e., e¤ort decreases with

the level of information in (N; (
;F ; p); v̂; ŵd;G), and increases in (N; (
;F ; p); ~v; ~wd;G):
Consistently with Theorem 4.1, in both contests the value of information is positive.

The table below describes the equilibrium e¤orts and payo¤s for � = 0:

� = 0 !1 !2 E(�)
ŝ�G

p
2

p
2

p
2

ŝ�F 1
p
3 1=2 +

p
3=2

û�G 1=4 5=4 3=4

û�F 3=8 9=8 3=4

~s�G
p
2

p
2

p
2

~s�F 2 2=
p
3 1 + 1=

p
3

~u�G 7=8 5=8 3=4

~u�F 3=4 3=4 3=4

One readily veri�es that E(ŝ�F) < E(ŝ�G); and E(~s�F) > E(~s�G); i.e., e¤ort decreases with

the level of information in (N; (
;F ; p); v̂; ŵd;G) and decreases in (N; (
;F ; p); ~v; ~wd;G).
Again consistently with Theorem 4.1, in both contests the value of information is zero.
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6 Appendix

Lemma A.1. A symmetric common-value Tullock contest with complete information

in which the players� cost of e¤ort is a twice di¤erentiable strictly increasing, and

convex function c : R+ ! R+ such that c(0) = 0 has a unique pure strategy Nash

equilibrium. Moreover, this equilibrium is symmetric and interior.

Proof. In the game associated with a symmetric common-value Tullock contest

with complete information the set of pure strategies of every player is R+ and the

payo¤ function of each player i 2 N is hi : Rn+ ! R+ given for x 2 Rn+nf0g by

hi(x) =
xi
�x
v � c(xi);

where v > 0 is the players�common value and �x =
Pn

j=1 xj, and

hi(0) = �iv � c(0) = �iv;

where � 2 �n is predetermined. Thus, hi (�; x�i) is twice di¤erentiable and concave
on R++, and

@hi(x)

@xi
=
�x� xi
�x2

v � c0(xi):

Let x� 2 Rn+ be a a pure strategy Nash equilibrium. Then for all i 2 N player i�s

e¤ort x�i solves the problem

max
xi2R+

hi
�
xi; x

�
�i
�
;

i.e., (@hi(x�)=@xi)x�i = 0: Clearly x
� 6= 0; since n � 2; then �i < 1 for some i 2 N;

and therefore

hi(0; 0) = �iv < v � c(") = hi("; 0)

for " > 0 su¢ ciently small. Let k 2 N such that x�k > 0: Then

@hi(0; x
�
�i)

@xi
=
v

�x�
� c0(0) > �x� � x�k

(�x�)2
v � c0(x�k) = 0

for all i 2 Nnfkg: Thus, x�i > 0, and therefore @hi(x�)=@xi = 0; i.e.,

�x� � x�i
(�x�)2

v = c0(x�i )

for all i 2 N: Hence x�i = t� > 0 for all i 2 N; where t� is the unique solution (recall
that c00 � 0) to the equation

(n� 1)
n2t

v = c0(t): (9)
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Obviously, the pro�le (t�; :::; t�); where t� is the solution to equation (9) is a pure

strategy equilibrium. Hence the contest has a unique pure strategy Nash equilibrium,

which is symmetric and interior.�

Lemma A.2. Let f : R2 ! R be twice di¤erentiable and homogeneous of degree one.

Then f is convex (concave) on R2 if and only if fxx(x; y) � 0 ( fxx(x; y) � 0) for all
(x; y) 2 R2:

Proof. By Euler�s Theorem

f(x; y) = xfx(x; y) + yfy(x; y):

Di¤erentiating with respect to x on both sides on this equation and simplifying yields

xfxx(x; y) + yfyx(x; y) = 0: (10)

Likewise

xfxy(x; y) + yfyy(x; y) = 0: (11)

Hence

x2fxx(x; y) = y
2fyy(x; y);

and therefore

fxx(x; y) S 0, fyy(x; y) S 0:

Further, (10) and (11) imply

fxx(x; y)fyy(x; y)� fxy(x; y)fyx(x; y) = 0:

Thus, the eigenvalues of the Hessian matrix of f are non-negative (non-positive) when

fxx is a non-negative (non-positive) function on R2: �
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